APl Documentation V3.0

1 Changelog

Version Date Author Update
2.1.1 06/01/2016 Jim Potter - API release
3.0.0 12/28/2016 Jim Potter - JSON document

introduction
- Method consolidation
& deprecation

3.0.1 02/01/2017 Jim Potter - Versioning table
- Correction to jdDriver
xml sample

3.0.2 03/02/2017 Jim Potter - Updated Customer
Field Length
3.0.3 07/11/2017 Jim Potter - Added

deliveryResponse
document to allow for
resend of deliveryReceipt in
case of error/timeout

2 General Overview

At its most basic, IDISPATCH allows delivery drivers to collect an electronic copy of a signature on a
touch enabled mobile device. Beyond that, it can also track a driver’s location as well as act as a
rudimentary messaging app on a data enabled mobile device. This application, however, will run in
a ‘batch mode’ for devices without fill-time data capabilities. Allowing even remotely located

customers to take advantage of JDISPATCH's basic functionality.

2.1 Basic JDISPATCH web service
functionality

A common, integrated, JDISPATCH transaction would have a fairly straight-forward flow. An order is
placed on the seller’'s system, and the seller’s system processes the order up to the point of being
dispatched for delivery. At that point, the seller system generates a dispatch transaction for a
driver to send one or more invoices to the IDISPATCH API. Once JDISPATCH receives notice of the
delivery, it will notify the driver of a pending delivery and push the order detail to their device.
From there, the driver would deliver the product and take a signature of the party receiving the
product. That signature is then passed back to the JDISPATCH server where it is saved off and
available for future use. Once the signature is saved on the JDISPATCH server, it can optionally be
passed back to the sellers system via the API if they wish to merge it on to an electronic copy of
the invoice the customer received. After a delivery is made, the confirmation signature is instantly
available within the JDISPATCH dashboard for any proof-of-delivery queries that may come in.

In addition, the seller has access to a number of tools to help them analyze their delivery
performance. From within the JDISPATCH dashboard, a user sees real-time statistics of average
processing and delivery time by driver and customer as well as driver efficiency. Beyond the real
time statistics and graphs, the JDISPATCH user has the ability to extract detailed delivery
information for analysis after the fact.

Communication between the driver’'s mobile device and the JDISPATCH server does not have to be
on-going. If the mobile device notices a loss of connectivity, it will operate in a ‘batch mode’ until
connectivity is restored, at which point it will send through any deliveries that were processed
during the loss of connectivity. Subsequently, any ‘batch’ transactions will be pushed back to the
seller system at the time they are confirmed on the |DISPATCH server.

2.2 JDISPATCH Features

jDispatch Mobile Application
Signature capture

Part delivery confirmation
Background location services
System to driver communication
Part pickup confirmation

‘One Off’ invoice scan and confirm
Push notifications

Driving directions

Route Optimization

jDispatch Dashboard

Real-time delivery analysis
Real-time corporate delivery metrics
Signature recall

Delivery analysis extracts

Pickup dispatch

Driver communication

Driver 'on map' location tracking
Dashboard configuration

Quick phone registration

Connected

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Connected

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Batch Mode

Yes

Yes

Yes

Batch Mode

Yes

Yes

Yes

Yes

Yes

2.3 JDISPATCH Flow Diagram -
Integrated

2.4 |DISPATCH Flow Diagram -
Non-Integrated

3 Transaction API

3.1 Overview

In order for third-party systems to utilize the integrated features of JDISPATCH, they must utilize
the JDISPATCH Transaction API, which allows third-party systems to create dispatch requests, and
accept back subsequent delivery confirmations and signatures. The two transaction types utilized
are a dispatch transaction and a delivery transaction

3.2 Basic JDISPATCH order
transaction architecture

Overall, the JDISPATCH document stack can be broken down in to 2 main segments, delivery
dispatch and delivery receipt. These two transactions would be the only required integration
points for any third party system, as all other functionality of the product can be handled by the
JDISPATCH web and mobile applications

1. Delivery Dispatch: This is the point where a delivery is dispatched from the third-party
system

2. Delivery Receipt: This is a transaction that is passed back to a pre-configured URL
utilized by the third-party system to take back delivery confirmations once they are
processed by the |DISPATCH web application.

3.3 Document Structure

The information passed within a JDISPATCH APl document can be sent via XML or JSON. All
necessary information within a JDISPATCH API document is contained within an element tag. This is
recognized by both a root <jDispatchElement> tag, and an ending </jDispatchElement> tag.
Empty elements are allowed within a JDISPATCH API document and will be ignored upon document
validation on the JDISPATCH server.

AMS has done their best to select semantic element names to avoid confusion when translating
documents. Also, all tag names use Camel Case, indicating that the first letter of each word will be
capitalized, and all subsequent letters are lower case. The first letter of the <jDispatchElement>
elements will, however, be lower case.

3.4 XML Schema

Each of the JDISPATCH document layouts are described in an XML schema document, or, template.
If you are unfamiliar with a schema document, the W3C site provides more information on this

topic here: http://www.w3.org/standards/xml/schema. Detailed schemas are listed in Appendix B.

3.5 Document Sections

http://www.w3.org/standards/xml/schema

Each document contains 3 basic elements, a root <jDispatchElement> element, which will be
named by the transaction type, either a <jDispatchRequest> or a <jDispatchResponse>
<DocHeader> element and a <DocContent> element.

3.6 DocHeader

The header of each document contains identifying information that validates the request and the
user sending the request. The required information will not change, regardless of the document
type being used. The following attributes must exist on each incoming request’s header element

Attribute Required Description

DocID Required A GUID to make each document
uniquely identifiable

DocType Required Defining the document type that is
being sent

Sender Required A unique identifier assigned to the
sender.

Date Required Time stamp of the document, to the

millisecond per the 1SO 8601
standard. YYYY-MM-DDThh:mm:ss

apikey Required API Key provided to you from AMS

env Required “TEST” or “PROD”

3.7 DocType Types

Document Description
deliveryDispatch Document to create a delivery
deliveryReceipt Document sent on delivery confirmation

deliveryResponse Document sent to confirm deliverReceipt

jdCustomer Document to add a customer to the web

jdDriver Document To add a driver to the web.
deliveryDispatchResponse Response from deliveryDispatch document
jdCustomerResponse Response from jdCustomer document
jdDriverResponse Response from jdDriver document

3.8 DocContent

The DocContent is much different than the DocHeader element in that the DocContent element will
contain all of the information unique to the requested transaction type. A DocContent element may
contain many elements of the same type, sending many invoices in one deliveryDispatch
document. For example, this allows many invoices to be dispatched at a single time.

XML document examples can be found in Appendix A, and JSON examples can be found in
Appendix B, defining element types and requirements.

4 Transaction Overviews

This section will give a general outline of each of the unique transaction types. For detailed XML
examples, please refer to Appendix A, and for JSON examples, please refer to Appendix B.

4.1 |DispatchRequest DocType
Overviews

deliveryDispatch: The deliveryDispatch transaction is the initial dispatch of a delivery to the
JDISPATCH web application, and subsequently through to the defined mobile application running on

a smart device. Additionally, any cancellations, manual receipts and deletions will be processed via
this transaction.

The decision of what type of transaction is being passed is determined by the resquest document’s
<Status> tag.

A - Add a delivery in to the jDispatch system. Drivers are notified of new deliveries added to their
device via a push notification

R - Mark a delivery as Received, this is usually in the case of a delivery being as being picked up or
received by the host system

D - Delete a delivery from the jDispatch system. This is usually a scenario where an invoice was
inadvertently dispatched, and needs to be ‘pulled back’ to the host system for dispatch at a later
time.

C - Cancel a delivery. This will mark a delivery as cancelled within the jDispatch system. Drivers
are notified of cancelled deliveries, and confirmations are done against cancelled deliveries,
putting them into a ‘Retired’ state when confirmed.

Deliveries are sent to the jDispatch system, one delivery batch per driver, and the response of the
delivery will be within the <Status> tag of the response, with a response based on the response
status table found in Appendix C, with the detail of any failures being reported in the response’s
<Message> tag. A successful load of all deliveries will result in a SUCCESS <Status>, with the
<Message> tag returning the unique run ID assigned to the delivery batch.

jdCustomer: Any maintenance to customer information (Add/Change/Delete) in the JDISPATCH
web application needs to be done via the jdCustomer function & transaction. Only basic
information is passed for the purpose of enabling the functionality of the |DISPATCH web & mobile
applications. This transaction can have multiple customers passed, so bulk actions are possible.
The possible statuses for this document are:

A - Add a new customer. Records passed with this status are assumed to be new customers, and
the data is added to the system. If, for some reason, the customerlID that is passed is already in the
system, that customerID will be updated with the detailed information found in the document

D - Delete a customer. The customerlD associated with this status will be deleted from the
jDispatch system

C - Change a customer. The customer record associated with the customerID passed in this
document will have its information updated based on the detail passed within the document.

jdDriver: Any maintenance to driver information (Add/Change/Delete) in the JDISPATCH web
application needs to be done via the jdDriver function & transaction. Only basic information is

passed for the purpose of enabling the functionality of the JDISPATCH web & mobile applications.
This transaction can have multiple drivers passed, so bulk actions are possible. The possible
statuses for this document are:

A - Add a new driver. Records passed with this status are assumed to be new drivers, and the data
is added to the system. If, for some reason, the driverID that is passed is already in the system,
that driverID will be updated with the detailed information found in the document

D - Delete a driver. The driverID associated with this status will be deleted from the jDispatch
system

C - Change a driver. The driver record associated with the driverID passed in this document will
have its information updated based on the detail passed within the document.

4.2 |DispatchResponse DocType
Overviews

deliveryReceipt: The deliveryReceipt transaction is a transaction sent from the JDISPATCH web
application to a pre-configured URL defined by the third-party system (if required). This document
passes back the delivery time, signature and recipient for use within the third-party system. The
signature image is a JPEG image, encoded with base64 encoding, passed through as an ASCII string
and to be decompressed and converted to an image by the host system.

deliveryResponse: The deliveryResponse transaction is a transaction sent from the third-party
system back to the JDISPATCH api server. This document will pass a status message indicating
whether the deliveryReceipt document was accepted and properly processed, and whether to try
re-sending. In the case of a failure and re-send request, the JDISPATCH api server will begin
attempting to re-send the document. Upon 5 failures, the admin email on the sponsor’s account
will be notified of the error.

deliveryDispatchResponse: This document will be in the format of the general
jDispatchResponse. The basic SUCCESS or FAIL status will be reported by the <Status> tag, a
<Code> tag will report a more detailed status with a response based on the response status table
found in Appendix C for a deliveryDispatch document. Any detailed failure information is

contained in the <Message> tag.

jdCustomerResponse: This document will be in the format of the general jDispatchResponse. The
basic SUCCESS or FAIL status will be reported by the <Status> tag, a <Code> tag will report a
more detailed status with a response based on the response status table found in Appendix C for a
jdCustomer document. Any detailed failure information is contained in the <Message> tag.

jdDriverResponse: This document will be in the format of the general jDispatchResponse. The
basic SUCCESS or FAIL status will be reported by the <Status> tag, a <Code> tag will report a
more detailed status with a response based on the response status table found in Appendix C for a
jdDriver document. Any detailed failure information is contained in the <Message> tag.

4.3 Notable Field Limits

CustomerlID - Alpha/Numeric, Limit 15 characters.
DriverID - Alpha/Numeric, Limit 6 Characters.

BranchID = Numeric, Limit 4 digits.

5 Appendix A

5.1 XML Request Transaction
Examples

deliveryDispatch

<jDispatchRequest>
<DocHeader>
<DoclID></DocID>
<DocType>deliveryDispatch</DocType>
<SenderlD></SenderID>
<apiKey></apiKey>
<env></env>
<Date></Date>
</DocHeader>
<DocContent>
<DeliveryCount></DeliveryCount>
<Delivery>
<BranchID></BranchID>
<Status></Status>
<OrderDate></OrderDate>
<CustomerlD></CustomerID >
<DriverlD></Driver|D>
<Invoice></Invoice>
<SubTotal></SubTotal>
<Taxes></Taxes>
<Freight></Freight>
<OtherChg></OtherChg>
<DeliveryType></DeliveryType>

<Total></Total>

<ltems>
<LineCode></LineCode>
<PartNumber></PartNumber>
<Qty></Qty>
<Price></Price>
<Discount></Discount>
<Extend></Extend>
</ltems>
<OverrideAddress>
<Address></Address>
<City></City >
<Province></Province>
<PostalCode></PostalCode>
</OverrideAddress>
<SignatureRequired></SignatureRequired>
</Delivery>
</DocContent>
</jDispatchRequest>
jdCustomer
<jDispatchRequest>
<DocHeader>
<DoclD></DoclD>
<DocType>jdCustomer</DocType>

<SenderlD></SenderID>

<apiKey></apiKey>
<env></env>
<Date></Date>
</DocHeader>
<DocContent>
<BranchID></BranchID>
<Customer>
<Status></Status>
<CustomerlD></CustomerID>
<CustomerName></CustomerName>
<Address></Address>
<City></City>
<Province></Province>
<Country></Country>
<PhoneNumber></PhoneNumber>
</Customer>
</DocContent>

</jDispatchRequest>

jdDriver

<jDispatchRequest>
<DocHeader>
<DoclD></DocID>
<DocType>jdDriver</DocType>
<SenderlD></SenderlD>
<apiKey></apiKey>
<env></env>
<Date></Date>
</DocHeader>
<DocContent>
<Drivers>
<Status></Status>
<BranchID></BranchlD>
<DriverID></DriverID>
<DriverName></DriverName>
</Drivers>
</DocContent>

</jDispatchRequest>

5.2 XML Response Transaction
Examples

deliveryReceipt

<jDispatchResponse>

<DocHeader>
<DocID></DoclID>
<DocType>deliveryReceipt</DocType>
<SenderlD></SenderlD>
<apiKey></apiKey>
<env></env>
<Date></Date>

</DocHeader>

<DocContent>
<CustomerlD></CustomerIiD>
<DriverlD></DriverID>
<DeliveryDate></DeliveryDate>
<DeliveryTime></DeliveryTime>
<Recipient></Recipient>
<SignatureCode></SignatureCode>

<Delivery>

<Invoice></Invoice>
</Delivery>
</DocContent>

</jDispatchResponse>

jdispatchResponse

<jDispatchResponse>
<DocHeader>
<DoclD></DocID>
<DocType></DocType>
<SenderlD></SenderID>
<apiKey></apiKey>
<env></env>
<Date></Date>
</DocHeader>
<DocContent>
<Status></Status>
<Code></Code>
<Message></Message>
</DocContent>

</jDispatchResponse>

deliveryResponse

<jDispatchResponse>
<DocHeader>
<DocID></DoclID>
<DocType>deliveryResponse</DocType>
<SenderlD></SenderlD>
<apiKey></apiKey>
<env></env>
<Date></Date>
</DocHeader>
<DocContent>
<Status></Status>
<Code></Code>
<Message></Message>
</DocContent>

</jDispatchResponse>

0 Appendix B

6.1 JSON Request Examples

deliveryDispatch

“jDispatchRequest": {
"DocHeader": {
"DocID": "",
"DocType": "deliveryDispatch",
"SenderID": "",
"apikey": "",

envll_ nn

“Datell: mnn

"DocContent": {
"DeliveryCount": "",
"Delivery": {

"BranchID": "",
"Status": "",
"OrderDate": "",

"CustomerID": "",

"DriverID": "",
“Invoice": "",
"SubTotal": "",
"Taxes": "",
"Freight": "",
"OtherChg": "",
"DeliveryType": "",
"Total": "",
"ltems": {
"LineCode": "",
"PartNumber": "",
"Qty": "",
“Price": "",
"Discount": "",
"Extend": ""
I
"OverrideAddress": {
"Address": "",
"City": "",
"Province": "",
"PostalCode": ""
h

"SignatureRequired": ""

jdCustomer

"jDispatchRequest": {
"DocHeader": {
“DocID": "",
"DocType": "jdCustomer”,
"SenderID": "",
"apikey": "",
"env": "",
"Date": ""
b
"DocContent": {
"BranchID": "",
"Customer": {
"Status": "",
"CustomerID": "",
"CustomerName": "",

"Address": "",

"City": ||||'
"PFOVihce": ||||'
“Country": "",

"PhoneNumber": ""

jdDriver

"jDispatchRequest": {
"DocHeader": {
"DoclD": "",
"DocType": "jdDriver",
"SenderID": "",
"apiKey": "",

envll_ nn

“Datell: nn

"DocContent": {
"Driver": {
"Status": "",
"BranchlD": "",
“DriverID": "",

"DriverName": ""

6.2 XML Response Transaction
Examples

deliveryReceipt

"jDispatchResponse™: {
"DocHeader": {
"DocID": ",
"DocType": "deliveryReceipt",
"SenderID": "",

“apiKeyll: IIII’

"env": "",
"Date": ""

H

"DocContent": {
"CustomerID": "",
"DriverID": "",
"DeliveryDate": "",
"DeliveryTime": "",
"Recipient": "",
"SignatureCode": "",
"Delivery": {

Illnvoicell, nn

jdispatchResponse

"jDispatchResponse": {
"DocHeader": {

“DOCID": IIII’

"DocType": "",
"SenderID": "",
"apiKey": "",
"env'": "",
"Date": ""

}
"DocContent": {
"Status": "",

"Code": "",

"Message": ""

deliveryReceipt

"jDispatchResponse": {
"DocHeader": {
"DoclID": "",
"DocType": "deliveryResponse”,
"SenderID": "",

“apiKeyll: IIII’

"env": "",
"Date": ""
H
"DocContent": {
"DocContent": {
“Status": "",
"Code": "",

IIMessagell: nn

7/ Appendix C

7.1 Status Codes

The status codes below are used to report the status of requests sent to this API.

2XX - Success of some kind
4XX - Error occurred in client’'s part

5XX - Error occurred in server’s part

Status Code

200

400

401

403

404

405

412

413

460

465

500

501

503

Revision #4

Created 1 October 2018 15:28:22 by Admin

Updated 20 August 2021 16:45:10 by Jim

Description

OK

Bad request

Authentication failure

Improper Data Format

Invalid Document Type Passed

Invalid Document Structure

Condition Failed

Request Entity Too Large

dispatchReceipt failed - Resend requested
dispatchReceipt failed - Resend not required
Internal Server Error

Not Implemented

Service Unavailable

